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quality of target implosion. Simulating all the permutations 
would produce 5 petabytes of raw data, which is close to the 
current limit for Livermore’s parallel file systems. Steve Langer, 
Peterson’s colleague and a fellow Laboratory design physicist, 
heard about the effort to map out all nine parameters and 
conceived of a way to help.

From Supercomputer to Server Farm
Langer’s idea involved Trinity, then a brand-new Cray XC40 

system. Typically, before transitioning a new computer to 
classified work, a national laboratory holds an open-science 
period where researchers can “kick the tires” of the new system 

aimed at a spherical target housed in a cylindrical hohlraum, 
which creates an asymmetrical, preferred axis. To combat this 
tendency, Peterson was tasked with what he calls an impossible 
job: either make the implosions more round or create an 
implosion robust enough to withstand the inherent asymmetries 
and still achieve high energy yield. “I listed all the ways that NIF 
could possibly implode something asymmetrically,” Peterson 
says. “I got a very large number of parameters and realized that 
to check all the different combinations, I would need to run many 
simulations—more than had ever been done before.”

The nine parameters included various asymmetries, drive 
multipliers, and gas fill densities—all factors that affect the 

MACHINE LEARNING POINTS 
TOWARD NEW LASER TARGET DESIGNS

WHEN the Trinity supercomputer at Los Alamos National 	
 Laboratory was first coming online, calls went out for 

research projects that would test—and potentially break—the 
new system. Researchers from Lawrence Livermore answered 
the call, and their work with Trinity and machine learning could 
disrupt 40 years of assumptions about inertial confinement 
fusion (ICF). 

“The theory of ICF was all done with pencil and paper, 
assuming a spherical implosion,” says design physicist Luc 
Peterson. “In many studies, if your implosion isn’t spherical, 
you’re not getting as much energy out of it as you could.” ICF 
implosions at Livermore’s National Ignition Facility (NIF) are 

(top) Simulations on the Trinity supercomputer produced 

approximately 60,000 data points, which were then used to train a 

machine-learning model. (bottom) The model predicted all the points 

between the simulations to produce a surrogate model across nine 

parameters, which can be represented by the gradient in any two 

dimensions of the nine-dimensional space.
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and Humbird ran a more expensive, full-scale physics simulation 
on the ovoid target, and their predictions were confirmed, although 
the researchers were initially not sure why. 

After puzzling over the contradictions, Peterson realized 
he was seeing zonal flows in the imploding egg-shaped target. 
Similar to a spiraling hurricane sucking up neighboring clouds, 
zonal flows can absorb disruptions caused by target support 
tents or capsule roughness and incorporate them into a larger, 
more stable vortex. This incorporation steadies the implosion 
and allows for greater energy output, the researchers concluded. 
The next steps are to improve the detail of future simulations 
and continue the search for the perfect target shape.

“Our codes indicate that other designs could exist out 
there, which is fascinating because we’ve been chasing the 
same design for 40 years,” says Peterson. “The crazy thing is, 
we didn’t force the code to produce the data. The code could 
always have yielded these results if we had just known where to 
look. Machine learning and data science gave us the power.”

—Ben Kennedy
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For further information, contact Luc Peterson at (925) 423-5459 

(peterson76@llnl.gov).

would likely produce high energy yield, whereas other areas 
indicated the opposite. The high-yield areas indicated how 
robust the implosion was—what Peterson calls “wiggle room.” 
A target designed within a broad “plateau” of high-yield 
implosions would be resistant enough to withstand perturbations 
unavoidable in experiments, whereas a target based on a narrow 
peak on the map might be easily disrupted and “fall off the 
mountain.” After searching through the most promising Trinity 
simulations and the adjacent machine-learning predictions, the 
model had what looked like an answer. However, this optimum 
target did not look like the long-desired sphere but rather more 
like an egg.

Off Target Can Still Be on Target
The topographical map—much more detailed thanks to 

Humbird’s model—indicated that areas representing egg- or 
football-shaped targets, known as ovoids, were plateaus of 
stability. Even if NIF could not create an implosion at the absolute 
center of the plateau, being slightly off-center would still produce 
a high energy yield. With a better idea of where to look, Peterson 

speed dial for what I did to their poor machine,” says Peterson. 
The filtering system managed to trim the expected 5 petabytes 
of raw data down to 100 terabytes, but transferring the data 
between the two laboratories still took several months. “We 
joked that it would actually be faster to rent a van and drive 
across the desert with a bucket of USB drives,” he adds.

Rise of the Machines
Generating the data was only half of the challenge. The 

next step was to analyze the data and search for robust 
designs. However, searching through all the simulations was 
not sufficient. “We have approximately 60,000 data points, 
which sounds substantial, but when you consider nine-
dimensional space, it’s actually pretty sparsely sampled,” says 
Kelli Humbird, a Livermore Graduate Scholar who helped 
Peterson study the data. “We wanted an algorithm that would 
interpolate between the points and connect the dots so we could 
approximate the results of simulations anywhere in the nine-
dimensional space.” 

To fill in the gaps, Humbird used 80 percent of the Trinity 
simulations to train a machine-learning model, which was then 
tested on the remaining 20 percent of the data to evaluate its 
predictive capability. The model—a random forest decision tree 
method—accurately predicted yield with a less than 10 percent 
margin of error. Having a trained machine-learning model 
in hand that closely mimicked the expensive physics code, 
Humbird began predicting implosion performance between the 
simulated data points to search for a robust implosion. “This is 
not something we could have done with just our physics code,” 
says Humbird, whose work with Peterson has led to a machine-
learning project under the Laboratory Directed Research 
and Development Program. “Performing this search through 
nine-dimensional space would have required something like 
5 million physics simulations and 3 billion central processing 
unit hours. One would never have enough time. However, a 
rapid, accurate machine-learning model could do the same 
search in a fraction of the time.”

A sort of topographical map of target designs began to 
emerge as the model filled in additional data points. Some 
regions of the map represented locations where an implosion 

by running unclassified experiments. Laboratory technicians 
can also consult with the computer’s vendors as the experiments 
run and discover ways to fine-tune the system. Langer’s plan 
was to process their raw physics data on the fly, analyzing and 
deleting files while they were being created, instead of saving 
all the data. Peterson and Langer pitched their big-data physics 
simulation proposal to Los Alamos, and a collaboration was 
born. “We knew we would have to do some distillation to even 
store the results on disk, which prompted us to create this 
on-the-fly, in-transit system,” says Peterson. “We developed 
a system to perform the filtering while the simulations are 
running. The approach is like filling up a bucket with water 
while making a hole in the side to drain the bucket so it 
doesn’t overflow.”

Their project essentially turned Trinity—then a 8.1-petaflop 
(1015 floating-point operations per second) supercomputer 
designed to run one large simulation at a time—into a giant 
“server farm” capable of running several thousand simulations 
at once. The approach was not only necessary for the project 
but also worthy of the new computer’s open-science challenge, 
stressing Trinity in new, often unforeseen ways that sometimes 
affected other users. One surprised Los Alamos employee 
sent out a midnight email asking whether someone was 
performing large data transfers that had lowered data rates to 
only 17 gigabytes per second for codes that normally achieved 
more than 600 gigabytes per second. “Los Alamos put me on 
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Researchers discovered a ridge of high energy yield (yellow) that was larger 

for an ovoid target than for a sphere. Ignition was found to be far more likely 

with an ovoid, within a broader range of parameters. 

In this two-dimensional conceptual illustration, varying combinations of target 

design parameters produce high-yield simulations (light areas) and low-yield 

simulations (dark areas). The larger the light area, the more resistant the 

target’s implosion would be to perturbations.
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